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ABSTRACT 

We answer a question of T. Jech, showing that (1) there may exist weakly 
precipitous filters in L, and (2) there may exist a weakly precipitous filter on 
o h in a set-generic extension ofL. Hence, the existence of a weakly precipitous 
filter on oh does not imply the existence of 0 ~. 

1. Introduction 

1.1. After [Si], [GH] established some bounds on the power of  singular 

cardinals. A typical application of  [GH] is the following. 

(A) Assume that  Ro,, is a strong limit cardinal. Then 

2~o, < 1,1((2~ 

1.2. Let N :  On ~ Cn = { = a I a is an infinite cardinal} be a normal func- 

tional, and set C = Rg(N). We shall let N '  denote the normal enumerat ion of  

the class C '  o f  all the fixed points of  N. 

1.3. The following question was left open in [GH]. 

(B) Assume that bI', is a strong limit cardinal. Is there an "expressible" 

bound  on 2~;,, like for example 2~,  < bI'((2o',)+). 

1.4. In [JP], the answer to question (B) was shown to be positive i f  there 

exists a precipitous filter on o)1. 
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1.5. The previous assumption has the consistency strength of the existence 
of a measurable cardinal. Hence, the answer of [ JP] is not done in ZFC. 

1.6. [S] gets rid of the supplementary assumption, introducing a new kind of 
filter, and shows the following: 

(C) If Rg, is strong limit cardinal and there exists over to~ a weakly pre- 

cipitous filter, then 2~, < R'((22~ 

p + (D) If  Rg, is a strong limit and 2 ~', > (R,o,) , then there exists a weakly 
precipitous filter on tOl. 

For (C), see [S, Theorem 6.6] and for (D), [S, Conclusion 4.14 and Theorem 
4.15]. (D) is proven with the help of the covering lemma and of the following: 

(E) If there exists a cardinal 2 such that 2 ----((22")+)~ ~ then there exists a 
weakly precipitous filter on to~. 

1.7. The filters in question are called "almost nice" in [S] and "weakly 
precipitous" in [J]. 

Since a natural way to obtain such a filter is (E) above, a natural question is 
the following, asked in [J]: 

(F) Does the existence of a weakly precipitous filter on o9~ imply the 
existence of 0"? 

1.8. We shall show that the answer to question (F) is negative. Our sequence 
of  results is as follows. 

(1) We define semi-precipitous filters. Every semi-precipitous filter is 
weakly precipitous. 

Let us say that x is semi-precipitous (resp.: weakly precipitous) iffit  bears a 
semi-precipitous (resp. a weakly precipitous) filter. Then: 

(2) If  x is semi-precipitous, then L ~ "x is semi-precipitous". 

(3) Assume that 0* exists. Then: every Silver indiscernible is semi- 
precipitous in L. 

On the other hand, ZFC + V = L r "if x is semi-precipitous, then x is 
inaccessible, indeed completely ineffable". Hence, in order to obtain a semi- 
precipitous filter on 09~, we show 
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(4) If  r is semi-precipitous and P is a set of conditions having the x- 
antichain condition, then V e ~ "x is semi-precipitous". 

We also observe that "weakly precipitous" is, consistencywise, strictly 
weaker that "semi-precipitous", by showing 

(5) ZFC + V = L r "if x is semi-precipitous, then, for some a < x, a is 
weakly precipitous", and quoting that x must be inaccessible. 

Hence, we prove finally 

(6) Assume that x is weakly precipitous and that P is a set of conditions 
which satisfies the x-antichain condition. Then: V e ~ "x is weakly pre- 

cipitous". 

2. Notations 

2.1. On denotes the class of all ordinals. For a C_ On, ot(a) is the order-type 
o f a .  

2.2. IXI is the cardinality o fX.  cofCt) is the cofinality of 2 COn.  

2.3. If2 is a cardinal, HA is the set of all sets of hereditary cardinality strictly 
less that 2. 

2.4. I f j  is an elementary embedding, cp(j) is the critical point o f j .  

2.5. I fp  is a function, dom(p)  is the domain o f p  and Rg(p)  the range ofp .  

2.6. I f P  is a set of conditions, B(P)  is the boolean completion of P. If G is 
P-generic over Vand a ~ V e, a~ is the G-interpretation of a in V[G]. 

2.7. Coil(to, 0) is the set of all finite partial functions p : to ---- 0, ordered by 
reverse inclusion. 

2.8. If A, B are structures, A < B means that A is an elementary substructure 

of B. 

2.9. Let X be a set, and let F be a filter over X. We set I v =  

{S c_ X / X  - S ~ F }  (the ideal dual to F), 

F + = {S  cc_ X / S q i l F }  = {S  c_ X / V E G F ,  S 0 E v ~ ~ }. 

We also set B(F)  = ~ ( X ) / I r  (the boolean algebra of F). For S _ X, [S]F 
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denotes its class in B(F). We set [S]F < [T]F iff there exists some E ~ F  such 

that S n E ___ T. 

Note that B(F) - {0} is the separative ordered set associated with the (non- 

separative) ordered set (F § ___ ). 

For A ~ F+, we denote by F[A ] the filter generated on X by F t.J {A }. Hence, 

F[AI={SC_XI q E ~ F , E  NA C_S}. 

2.10. Finally, if F is a filter on X and f , g ~ O n  x, we set: f < F g  iff 

{ x ~ X  [ f ( x )<g(x ) }~F ,  f <=vg iff { x E X  If(x)  <-_g(x)}~r and f =vg iff 

( f  <=vg and g <=vf)" 

3. Weakly precipitous filters 

3.1. x will always denote an uncountable regular cardinal. All the filters over 

x will be assumed to be normal. For the convenience of  the reader, we recall 

some definitions and facts from [S]. 

3.2. The game G(F, g, a). Let F b e  a normal filter over x. Let g E On ~ and 

aft: On. We consider the following game, denoted by G(F, g, a), of(potential) 

length to. Set F0 = F, go = g, a0 = a. For 1 < i < to, the move number i of  

player I will be a pair (Ai, gi), with Ai C_C_ x and gi ~ On ~, while the move of  

player II will be a pair (F,, ai), where Fi is a normal filter on x and a~ ~ On. The 

rules are as follows. 

(a) For 0 < i < to, A~+~E(F~) + and g~+l <F, tA,§ 
(b) For 0 < i < 09, F~ + 1 ~- Fi [Ai + i] and ai +, < ai. 

It is clear that, at some stage i < to, one of  the two players is not going to be 

able to play according to the rules. The first player to whom this happens has 

lost the game. Hence, G(F, g, a) is an open and closed game m in particular it 

is determined. 

3.3. We shall shorten the expression "player Xhas  a winning strategy in the 

game G" to "X wins G". 

3.4. REMARKS. 
(1) If II wins G(F, g, a) and a =<_ fl, II wins G(F, g, fl). 
(2) I f I I  wins G(F, g, ~) and g'  =<Fg, then II wins G(F, g', a). 
(3) I f I I  wins G(F, g, On) then, for some t ~ O n ,  II wins G(F, g, t~). 

Indeed, setting 0 = 2 ~. II~<~ I g(a) + 11, we see that player I has essentially 6 

partial plays in G(F, g, On), since we can always assume that all moves (Ai, g,l 

of  I are such that g~ ~ II~<~(g(a) + 1). Hence, a winning strategy for II will yield 
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at most 0 possible answers. Consequently, if II wins G(F, g, On), then, for 

some ~ < 0 +, II wins G(F, g, ~). 

3.5. The game G*(F, g). We still let F be a normal filter over x and 
g ~ O n  ~. G*(F, g) is a game of length 09. It runs like G(F, g, a), but "forget- 

ting" the ai'S. I.e.: for 1 _-< i < to, player I plays (A~, gg)E ~ (x )  X On ~ and 
player II plays a normal filter Fi on x. The rules are as rules (a), (b) ofw with 
"a~ + ~ < a~" omitted. I wins G*(F, g) iffhe (or she) can play to correct moves. If 

not, then II wins. Hence, G*(F, g) is a closed game. 

3.6. REMARKS. 

(1) It is clear that, i f I I  wins G(F, g, On), then II wins G*(F, g). 

(2) Conversely, if II wins G*(F, g), then II wins G(F, g, On). 

To see that, let a* be a winning strategy for II in G*(F, g). Let T be the 

set of  all finite sequences s = ((A1, g~) . . . . .  (A,, g,)), where Ai c_ x, gi 
II~<~(g(a) + l) and s is a correct partial play of I against a* in G*(F, g). Let us 

order T by end-extension, setting s<~t iffs __ t and s # t. Since a* is a winning 
strategy, ,~ is well-founded on T. Hence, (T, ,~) admits a (minimal) rank 

function p : T---, On. Set 0 = 2 ~. H,<~ I g(a) + 1 1. Since [ T[ < 0, there exists 
< 0 § such that Rg(p) ___ J. It is now clear that II has a winning strategy, say tr, 

in the game G(F, g, ~): i f I  has played s = ((A~, g~), . . . ,  (A,, g,)), then II plays 

tr(s) = (F,, a,), where F,  = a*(s) and a, = p(s). 

(3) Assume that II wins G*(F, (22") +) [where we denote by the same letter 
the ordinal 2 and the constant function x ~ {2 }]. Then, for all g ~ On ~, II wins 
G*(F, g). 

To see this, assume that II does not win G*(F, g). Hence, I wins G*(F, g). 
Let z be a winning strategy for I in G*(F, g). II has at most (22") possible partial 
plays against z [the number of filters on x]. Hence, I has at most (22") possible 
answers (Ai, gi) according to z. If we denote by Xthe union of the images of all 

such possible gi, then IXI _-< 22". Hence, for some ~ <(22")  +, we have an 

isomorphism h : X ~ ~. If we replace each g~ by h o g~, we obtain from z a 
winning strategy for'] in G*(F, ~), a contradiction. 

3.7. Consequences. We summarize our remarks as follows. "For all g E  

On ~, II has a winning strategy in G*(F, g)" iff "For all g E On ~, there exists 

some a~.On such that II has a winning strategy in G(F,g, or)" iff "For all 
< (22") +, II has a winning strategy in G*(F, ~)". 
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DEFINITION 1. Let F be a filter over x. F is weakly precipitous iff 
(a) F is normal, 
(b) II wins G*(F, (22~)+). 

x is weakly precipitous iff there exists a weakly precipitous filter over x. 

4. Semi-precipitous filters 

4.1. We shall now consider a different property. Similar properties have 

been considered in [S] and [S-l]. 

DEFINITION 2. Let 2 be a cardinal such that 2 > x. We say that x is 

2-semi-precipitous iff there exists a set of  conditions P such that the following 

is forced over P: "there exists an elementary embeddingj  : H~ ---M, of  critical 

point r ,  such that M is transitive". 

Of  course, H~ means (H~) v. 

We shall now give a game-theoretic equivalence of  2-semi-precipitousness. 

DEFINITION 3. Let R be a set. We say that R is x-plain iff the following 
holds: 

(a) R § ~ ,  

(b) R is a set of  normal filters over x, 

(c) For all F E R  andA ~ F  +, F[A]~R. 

4.2. The game HR(F, 2). Let R be a x-plain set and g ~ On ~. We define a 
game, HR(F, g), of length to, as follows. Set F0 -- F. For 1 < i < to, player I will 

play as move number i a pair (Ai, g~), where A~ _ x and g~ < e  g, while player II 

will play a pair (Fi, y~), where F~ E R  and 7, E On. The rules are as follows: 

(a) For 0 _-< i < to, Ai+l~(Fi) + 
(b) For 0 _-< i < to, Fi+~ ~_ F~[Ai+]]. 

Assume that the game is over. Then, player II wins it iff for all i, k, n such 

that 1 < i, k _-< n < o9, (gi <e, gk) --* (Yi < 7k). 

For 2 E On, Hn(F, 2) denotes the game HR(F, c~), where c~ : x -~ {2}. 

If  R is the set of  all normal filters over x, Hn(F, g) will be denoted by 
H(F, g). 

TrIEORF.M 4. Let 2 be a cardinal such that c o f ( 2 ) >  x. The following are 
equivalent: 

(1) x is 2-semi-precipitous. 
(2) There exists a x-plain set R such that, for all F ~R ,  player II has a 

winning strategy in the game HR(F, ,~ ). 
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(3) There existts a normal filter F on x such that H has a winning strategy in 
the game H(F,  it). 

PROOF OF THEOREM 4. (2)--" (3) is evident. Hence, we are going to prove 

(1)--* (2) and (3)--*(1). 

(1) --- (2). Assume that x is it-semi-precipitous. Let P be a set o f  condit ions 

satisfying Definition 2, and let A denote the boolean complet ion of  P.  Let 

M,  j ~ V A be such that [[-A "J: H~ ~ M is an elementary embedding of  critical 

point  x and M is transitive". Let D ~ V A be such that 

Ih  D = {X ~H~ Ix  x and x E j ( X ) } .  

For all p EA - {0}, set Fp = {XC_ x I p I ] -X~D}  �9 Since D is forced to be a 

V-normal, V-ultrafilter over x, Fp is a normal filter over x. 

CLAIM 1. (a) p <= q --, Fq C_ Fp. 

(b) S ~(Fp) + iff, for some q <-_ p, q [[- S E D  iff, for some q <= p, S ~Fq. 
(c) Assume that S ~(Fp) +. Then: for some q < p, Fp[A] = Fq. 

PROOF OF CLAIM 1. (a) and (b) are obvious. Hence,  let us prove (c). 

Assume that SE(Fp)  +. Set q = II II A ^ p .  W e  claim that Fp[S] = Fq. 
By (b), q > 0. On the other hand, Fp[S] c_ Fq is obvious. Hence, let us prove 

that Fq C_ Fp[S]. Assume not. Then, for some X ~ F q ,  X q!Fp[S]. Hence, we can 

find some Y _C_ S such that Y E (Fp) + but  Y rq X = ~ .  Since Y ~ (Fp) +, we can 

find some r ~ A  - {0} such that r _-< p a n d  r [[- Y E D .  Since Y _ S, r 1[- S ~ D .  
Hence,  r _-< q. Hence, r [[- X ~ D ,  Y ~ D ,  X n Y = Z~, a contradiction. 

QE D Claim 1 

Hence, set R = {Fp [ p CA - {0}}. By Claim 1, R is x-plain. We have got to 

show that, for all F E R ,  II has a winning strategy in HR(F, it). We shall define 

such a strategy, say a,  as follows. First, we fix some po~A - {0} such that 

F=Fpo. Assume that I plays, as first move  in HR(Fp0,2), (Al, gO, where 

A I E (Fpo) + and gl " x --* it. Let p~ E P and 71E On be such that Pl < P0, P~ [~- A~ E 

D and Pl I[-J(g~)(x) = 71. The answer o f l I  to this move,  according to a,  will be 

the pair (Fp,, ~'t). [Hence, II has played, not only (F~, 71), but  (F~, 71, Pl), where 
F, = Fp,.] 

Continuing in this way, we arrive, after n steps, at a move  (Fp., 7., P.)  o f  

player II. I f  I answers (A.+~,g.+l), we let II play by a (Fp.+,, 7.+0,  where 

(P.+l,  7.+1) are to (A.+~,g.+~, p.) what (p~, 7~) is to (At, g~, Po). We claim that 
this strategy a is winning. For, assume that the play is completed, that i, k, n are 

such that 1 _-< i, k < n < o) and gi <F, gk. Set X = {a < x ] gi(ot) < gk(a)}. Hence, 
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X ~  Fn = Fp. Hence, Pn I~" x ~j(X),  hence Pn [[-J(g )(x) < j (g~  )(x). On the other 

hand, Pn < Pi, lag. Hence, Pn ][- Yz < Yk. QED (1)---" (2) 

REMARK. Actually, the following stronger property is satisfied as well. 

CLAXM 2. I f  1 =< i, k _-< n < to, then (gi <F, gk) ~ (7i < Yk). 

PROOf: OF CLAIM 2. Assume that gir g,.  Set X = (a  < x I gk(7) < gi(a)}. 

Hence,  XE(Fn)  § Hence, for some r < Pn, r I~- X ~ D .  As before, r I~" x Cj(X),  
hence, since r < Pi, Pk, r I~" Yk < ~'i. QE D Claim 2 

(3) ~ (1). Let us assume that (3) is true, and let F be as in (3). Set 0 = 2 ~ and 

P = Coil(to, 0) [P is hence the set o f  all finite partial functions p : to ---- 0, 

ordered by reverse inclusion]. We shall show that this set P satisfies Definition 

2 for 2. Let a be a fixed winning strategy for player II in the game H(F, 2). Let 

G be a fixed P-generic set over V. Set S = ( ~ ( J c ) •  v. In V[G], S is 

countable. Hence, we can find a surjection h : oa - {0} ~ S, such that, for all 

s ES ,  (i I h(i) = s} is infinite. Set, for i ~ t o  - (0}, h(i) = (Ai, g,). 
We are going to construct, in V[G], a V-normal, V-ultrafilter D on x, such 

that ((Hx)~ n V)/D is well-founded, by playing a certain play of  the game 

H(F,  2) against tr [of course, the full play will not be in V, but  every initial 

segment of  it will, being finite]. Hence, player II will always play according to 

a,  and we have to describe the moves  o f  player I. 
Assume that 1 < n < oa and that n - 1 moves  have already been done. Say 

that I has played ((Cl, g O , . - . ,  (Cn- 1, gn- 0), where 

(a) C I D _ C 2 _ ~ . . ' _ D C n - I ,  
(b) g~ . . . . .  gn- 1 are as in the enumerat ion h of  S .  

Assume that II has answered ((F1, 71) . . . .  , (Fn - 1, 7n - 1)). We have got to define 
(Cn, gn). Let us first look at the pair  (An, gn) given by the enumerat ion h. 

Case 1. AnE(Fn_I) § SetBn =An (1 Cn-~ (and C o = x i f n  = 1). 

Case 2. Anq~(Fn_~) +. SetBn = C n - t  n ( x - A n ) .  
Hence, Bn E(Fn_I)  § 

Case a. For no a E O n ,  (gn)-~({a})E(Fn-I[Bn])§ Set Cn = Bn. 

Case b. For some a ~ O n ,  (gn)-l({a})~(Fn_l[Bn])+. Let an be the least 
such a, and set Cn = Bn r (gn)-1({an}). 

Hence, (Cn, gn) is defined and Cn E(Fn_I)  +, Cn _c C~-1. 

At the end of  the to moves, set D = U {Fn [ n < to } and 

D '  = ( X ~  V I X  ___ x and for some n ~ t o  - {0}, Cn _c X}. 

CLAIM 3. D = D '  and D is a V-normal, V-ultrafilter on x. 
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PROOF OF CLAIM 3. (a) Clearly, D is a filter on ~(x)v .  

(b) D'  _ D. For, if C, c_C_ X _ K and X E  V, then X ~ F , ,  since C, E F . .  

(c) Assume that X ~  ~,(x) v. Then: XUD'  or (K - X)ED'. To see this, take 

some n such that 1 _-< n < co and X = A,. Hence, C, _ X or C. _ K - X. 
(a), (b), (c) together show that D = D'  and D is an ultrafilter on ~(tc) V. 

(d) D is V-normal. Since F __c_ D, D is uniform. Hence, let f ~  V such that 

f :  x --- x and f is regressive. We have got to find some X E D such that f t x is 

constant. Let n < o )be  such that f =  g,. Since F,_I[B,]  is normal and g, is 

regressive, for some a < ~:, (g,) -l((~))~Fn _ I[B,] +. Hence, we are in Case b. 

H e n c e f t c .  is constant and C, ~D. QED Claim 3 

Now, we can form the Ultrapower (H~) ~ f3 V/D [which is, in this case, equal 

to ((H~) ~ n Ha)/D, since cof(2) > K]. The Theorem of Los is clearly true, since 

we take all functions f :  x --* H~ such t h a t f E  V. Let this ultrapower be denoted 

by M, and let j : H~ --- M be the canonical elementary embedding. Since D is 

V-normal and uniform, j is of  critical point x. Hence, it is enough to show the 

following. 

CLAIM 4. M is w e l l - f o u n d e d .  

PROOF OF CLAIM 4. Assume not. Let (f~),<o~ E V[G] be a sequence of  

functions such that, for all n < o),f~ E(H~) ~ n Vand 

{a < lc [ f~ + ,(a) ~ f.(a)} ~ D. 

Note that Hz _.C_ V~ [this is obvious for regular 4, and is hence true for limit 2 

too, by taking unions]. Hence, replacing if necessary each f~ by the function 
rank of. ,  we can assume that, actually, for n < w,f~ ~A ~ n V. For n < w, let 

i(n) be the least index i such that 1 < i < o) and f~ = gi(.). We claim that 

7i(, + 1) < 7i(.) [where 7~ is part of  the answer of  player II at the move number i, 

according to a]. To see that, let k < r be such that i(n), i(n + l) _-< k and 

{a < 1r [fn+l(Ot) < f,(a)} ~ F  k. By the rules of  the game H(F, 4) we see that 

~it n + I) ~ 7i(n)" QED Claim 4. Theorem 4 

4.3. REMARKS. 

(1) If  we replaced, in Definition 2, Ha by Ya, then Theorem 4 would be true 

for every ordinal 2 such that cof(2) > x. 
(2) The clause c o f ( 2 ) >  x is not used in the proof of  (3)--(1),  since we can 

take as model the set M = ((H~) ~ n V)/D [or ((V~) ~ n V)/D]. It is used in the 

proof  of  (1)- - (2)  to show that, i f g E 2  ~ n V, then g~H~ [or g E  V~], so that 

j(g) be defined. 
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(3) Let us keep the notations of the proof o f ( 3 ) ~  (1), where we can assume 
that M is transitive, since it is well-founded. Set 5 = On n M. Since 
On n M = (2 ~ n IO/D and since V[G] ~ I ( , l~)v I = co, we see that 5 < (o.)1) V[G]. 
Hence, setting/~ = [(2 ~) +] v, we see that 5 </~. But, if we look now at the proof 

of  ( 1 ) ~  (2), we see that, for F ~ R, II has a winning strategy in the game 

HR(F, 2), while playing pairs (Fi, 7i) with 7~ < 5. 

Hence, for cof(2) > x, i f l I  wins HR(F, 2), then, for some ordinal 5 < (~)+,  

II has already a winning strategy in the game with the additional requirement 

that all ordinals 7~ played have to be < 5. 

DEFINITION 5. X is semi-precipitous iff, for all 2 > x, x is 2-semi-precipi- 

tous. 

4.4. REMARKS. 
(1) It is clear that if x is 2-semi-precipitous and / t  ~ 2, then x is/~-semi- 

precipitous. 

(2) Set 2 = (22,) + and assume that x is 2-semi-precipitous. Then: x is weakly 

precipitous. To see this, let F be a normal filter on x such that F satisfies 

condition (3) of  Theorem 4. It is enough to show that F is weakly precipitous. 
Let tr be a winning strategy for player II in H(F, 2). Then, clearly, the same a is 

a winning strategy for player II in the game G(F, 2, On), and we conclude by 
Remark 3.6(3). 

We shall show later that weakly precipitous does not imply semi-precipitous. 

(3) Assume that x is semi-precipitous. For all regular 2 > x, let Ra be a 
K-plain set satisfying condition (2) of  Theorem 4. We can find a cofinal class 

S c_ On and a x-plain set R such that, for all 2 ~ S ,  Ra = R. Hence clearly, for 

all 2 E On and all F E R, player II has a winning strategy in the game HR (F, 2). 

Hence, the following are equivalent: 

(a) x is semi-precipitous. 
(b) For some x-plain R, for all F E R ,  II has a winning strategy in HR(F, 2) 

for all 2 ~ On. 
(c) For some normal filter F o n  x, II has a winning strategy in H(F, 2), for all 

2 COn. 

5. Consistency results 

THEOREM 6. Assume that 0 # exists. 

semi-precipitous in L.  

Then: every Silver indiscernible is 
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PROOF OF THEOREM 6. Let (c~ [i ~ On ) denote the canonical indiscern- 

ibles for L. We shall show the following. 

CLAIM 1. L ~ "Co is ct-semi-precipitous'. 

Let us show that Claim 1 implies the Theorem. For, we then have that, for all 

a such that Co< a < c~, L ~ "Co is a-semi-precipitous". Since Lc, < L, we see 

that Lc, ~ "Co is semi-precipitous". Again because Lc, < L, we get that L ~ "Co 

is semi-precipitous". 

PROOF OF CLAIM 1. Let 7r : L ----L be an elementary embedding, such that 

zt r~ o = Id rco, zt(c0) = cl and 7 t (C l )  ~-" C 2. Set j  = it tLc,. Hence, j is an elementary 
embedding from Lc, into Lc2, of critical point x, and j ~ V. 

Set P = Coll(to, Cl)= CoU(to, cx) L. Since ~(p)L is countable in V, there 

exists G E Vsuch that G is P-generic over L. 

CLAIM 2. L[G] ~ "there exists an elementary embedding j ' :Lc ,~Lcz  of 

critical point Co". 

PROOF OF CLAIM 2. Let us, for a moment, work in L[G]. For i = l, 2, set 

x, = a ) l  is a formula and a ~[Lc,] <'~ and Lc, ~ ~[a]). 

Since I Cll = 09, we can find a family (A~)~ <,o such that A~ _ A~ +1, I Ail < 09 and 

L c , = U { A i l i  <og}. 
Let T be the set of  all partial functions p such that, for some i < 09, the 

following holds: 

(i) Dom(p)  =A~ and Rg(p) _ Lc,. 
(ii) If (~0, a)EX~ and a ~[A~] <~, then (~0, p(a))~X2. 

(iii) I f a  < c0 and a~Ai ,  then p(a) = a. 
(iv) If c0EA~, then p(co) > Co. 

If p, q E T, we set p <lq iff p _ q and p 4= q. 

The existence of j  shows that (T, <~) is not well-founded in V. Hence, it is not 
well-founded in L [G]. Ifb is a cofinal branch through T, it is clear tha t j '  = U b 
is an elementary embedding from Lc, to L~,, of  critical point x. QED Theorem 6 

The same kind of argument will give us the following. 

THEOREM 7. Assume that 2 is a cardinal in V, such that V ~ "x is 2-semi- 
precipitous and cof(2) > x". Then L ~ "x is 2-semi-precipitous'. 

PROOF OF THEOREM 7. Set 0 = (U) v and P = Coil(to, 0) = Coll(to, 0) L. 

Let G be P-generic over V. The proof of Theorem 4 shows the existence in 
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V[G] of an elementary embedding J :  La --" M of  critical point x, where M is 

transitive. It is clear that for some # ~ On, M = L~. Since La, L~ ~L[G], and 

L[GJ ~ "121 = to", we can apply the tree argument of the proof of Theorem 6 

between L[G] and V[G] and find an elementary embedding j ' :L~ ~Lu of 

critical point x, such that j '~L[G]. Since P ~ L ,  we conclude that x is 

2-semi-precipitous in L. QED Theorem 7 

5.1. REMARKS. Hence, from the existence of  0*, we obtain a semi-precipi- 

tous cardinal in L. However, it is easily shown that, if V = L, then a 

semi-precipitous cardinal is strongly inaccessible. Indeed, it is easily shown 

that, if V = L and x is x+-semi-precipitous, then x is completely ineffable. 

Hence, in order to obtain a semi-precipitous filter on to~, we have to do a 

further forcing extension [where we say that a normal filter F on x is semi- 

precipitous iff, for all 2 ~ On, player II wins H(F, 2)]. Hence: 

THEOREM 8. Assume that x is a regular cardinal, and that P is a set of 
conditions such that P has the x-antichain condition. Assume that 2 is a regular 
cardinal such that 2 > x and 2 > I P I .  Assume, moreover, that V ~ "x is 
2-semi-precipitous". Then, V e ~ "x is 2-semi-precipitous'. 

PROOF OF THEOREM 8. Assume not. Then, without loss of  generality, 

I~-P "x is not 2-semi-precipitous". Let, in V, 0 >- 2 ~ and Q = Coil(to, 0). Let K 
be Q-generic over v. By assumption, there exists in V[K] an elementary 
embeddingj : H~ ---- M of critical point x, where Mis  transitive. Without loss of  

generality, V[K] ~ " I M  I = to" [if not, we could increase 0 in order to insure 

this conclusion]. Hence, there exists a set G* E V[K], such that G* is j(P)- 
generic over M [it is clear that we can assume that PEHa, and that 

~ ( p )  _c Ha ]. Since P has the x-antichain condition in V and since j t~ -- Id t~, 

J te: P--'J(P) is V-complete. Hence, setting G = j - l (G*) ,  we see that G is 
P-generic over H~, hence over V. j clearly gives rise to an elementary 

embeddingj*:Ha[G] ~ M [ G * ] ,  which is in V[K]. Since IPI < 2  in V, we see 
that Ha[G] = (Ha)viii. Hence, in order to finish the proof, it is enough to show 

that 

CLAIM 1. V[K] is a generic extension of V[G]. 

PROOF OF CLAIM 1. Let 0 ~ V 8~r be a term which realizes with probability 
one the P-generic set G over Vwhich has just been constructed. Let us define, 
in V, a map h : B(P)--" B(Q) setting, for a ~ B(P), h (a) = 1[ a ~ G [[ s(Q). Since 

is forced over Q to be generic over V, h is a complete boolean morphism 
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(and, for every Q-generic set Kover V, h -~(K) = (G)K). It is, however, possible 
that h be not injective. Hence, set 

b = i n f { a U B ( P ) l h ( a ) =  l} and B ' = { a ~ B ( P ) l a < b } .  
BtP) 

Since h is complete, h(b) -- 1. Moreover, it is clear that h tB, is injective. Now, 

let Kbe  Q-generic over Vand set G = (G)r. Since h(b) = l, we see that b ~ G. 

Hence, G ' =  G N B' is B'-generic over V and V[G] = V[G']. But, since 

h'  = h tB, is injective and since (h')-~(K) = G', we see that V[K] is a generic 

extension of V[G'], hence of V[G]. QED Claim 1, Theorem 8 

5.2. Consequences. Hence, from the existence of 0 #, we have deduced the 
existence of a set-generic extension of L, in which o9~ is semi-precipitous, 

hence weakly precipitous. Hence, the existence of a weakly precipitous filter 

(even of a semi-precipitous one) on o9~ does not imply the existence of 0 #. Of 

course we could, by Theorem 7, replace in this remark "0 # exists" by "there 

exists a semi-precipitous cardinal". 

5.3. Complements.  We will now show that the existence of a cardinal x 

which is (22") § § is, consistencywise, strictly stronger that the 
existence of a x which is (22") +-semi-precipitous. In particular, the existence of 

a semi-precipitous cardinal is, consistencywise, strictly stronger that the 
existence of a weakly precipitous cardinal. 

THEOREM 9. Assume that V = L and that n is an integer such that 2 < n. 

Assume that x is x +" + Lsemi-precipitous. then: there exists an a < K such that oL 

is a +"-semi-precipitous. 

5.4. Comments .  Assume hence that, in V, x is (22")++-semi-precipitous. 

Using Theorem 7, we see that L ~ "x is r+4-semi-precipitous ". Using Theorem 
13, we can find some a < r such that L ~ "a is a +3-semi-precipitous". Since r 
is strongly inaccessible in L, LK ~ "ZFC + a is a +3-semi-precipitous". In 
particular, L~ ~ "a is weakly precipitous". 

5.5. PROOF OF THEOREM 9. Assume that x is x+" + Lsemi-precipitous. Set 

P -- Coll(oJ, x+,+l). Let G be P-generic over V. By Theorem 4, we can find 

some/z E On and, in V[G] ( = L [G]),  an elementary embedding j : L(K .... )--* 

L~, of  critical point x. 

Since x is x+"-semi=precipitous, we can find, by Theorem 4 and Remark 

4.3(3), a normal filter F on x and an ordinal J < x + # + i such that player II has a 



238 H.-D. DONDER AND J.-P. LEVINSKI Isr. J. Math. 

winning strategy in the game H(F, x +n) with the additional requirement that 

he must play only ordinals 7i < ~. Let tr denote such a strategy. Due to the 

bound t~ we see that, since n > 2, tr~Lt~.,+ b. In particular, trEL~. Hence, 

L~ ~ "tr is a winning strategy for player II in the game H(F, x§ ". By 

elementarity of j ,  for some a < x, Lt~ .... ~ ~ "for some normal filter F '  on a and 

some a', tr' is a winning strategy for player II in the game H(F', a +~)". It is 

clear that the pair (F', a') satisfies the same statement in L. QED Theorem 9 

5.6. REMARKS. 
(1) Hence, winning G*(F,g) is a local property, i.e.: if player II wins 

G*(F, (22") +) then, for all 2 COn, he wins G*(F, 2). 

(2) On the contrary, winning H(F, 2) is not a local property. Player II may 
win H(F, (22") +) without winning H(F, (22") + § 

6. More on weakly precipitous filters 

We have shown that semi-precipitous filters may exist in L, that the 

existence of a semi-precipitous filter is already a "medium large cardinal" 
axiom, and that a semi-precipitous filter on t.ol may exist in a set-generic 

extension of L. Since we know much less about weakly precipitous filters, the 
following theorem is not irrelevant. 

THEOREM 10. Assume that x is a regular cardinal, that F is a weakly 
precipitous filter on x and that P is a set of  conditions which satisfies the x- 
antichain condition. Then, V e ~ "the filter generated by F on x is weakly 
precipitous". 

Before proving Theorem 10, we shall have to recall a few constructions and 
lemmas. 

6.1. Let X be a set. Let P be a set of  conditions, and let us denote by A the 

boolean completion of P. To each a ~ V A such that [ h  a ___ X, we can 

associate a function ha~A x defined by the formula ha(x)= IIx a II A 

(for x ~ X). 

It is clear that [[-A a = (ha)- l (G), where G denotes the A- generic. Hence, the 

correspondence between a and ha is a bijection from {a ~ V A I I h  a c_ X} 
onto A x. Moreover, this bijection is boolean, in the following sense: 

if a, b, c ~ V A, then I]-A a A b = c iff ha ^ hb = he, where, for x U X, we set 
(ha  ^ hb)(x) = ha(x) ^ hb(X) in A. 
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6.2. Now let, in addition, F be a filter on X. For f ,  g E A  x, s e t f < F g  iff 

{X E X  If(x)  < g(x)} E F  and f=Fg iff {x E X  If(x)  = g(x)} E F .  
Set AX/F = (AX/=r) (the reduced product). For f E A  x, let [f]F denote its 

class in AX/F and set [ f ]e  < [g]F ifff<--Fg. 
Hence, AX/Fis a boolean algebra, and we have a boolean morphismjF : A --* 

AX/F given by jr(a) = [CXa]e, where cX:X ~ {a } is the constant function. 
Moreover, it is a well-known fact that jF is complete iff, for some cardinal x, 

A has the x-antichain condition and F is x-complete. 

6.3. Now, let G be A-generic over V. In V[G], set 

~ = { S  C_XI 3 E E F ,  E C_ S} 

(the filter over x generated by F). Hence, F will be the term of  V A representing 
F~. By 6.1, 

~'(X) N V[G] = {h-l(G)/h EA x ~ V). 

LEMMA 1 1. For h E A  x n V, h - I(G) E t~" G iff, for somep E G, Jr(P) < [h ]F. 

PROOF OF LEMMA 1 1. Assume that h-I(G)EPG. Then, for some E E F ,  
E c h - I ( G ) .  Take p E G  such that p I~-ABC_h-I(G). Then, for x E E ,  
P I[-A h(x)EG, i.e. p < h(x). Since E E F ,  we see that Jr(P) <= [h]v.. These 
derivations are actually easily seen to be equivalences. QED Lemma 11 

LEMMA 12. Assume that jF : A ~ A X / F is complete. Then,for all h E A x 
V and all p E A  - (0}, p I~'A h- ' (G)El# iff jF(p) <= [hlF. 

PROOF OF LEMMA 12. The "if" direction follows from Lemma 11. Let us 
hence prove the "only if" direction. Assume that p I[-A h-~(G)E/0.  Set D = 
(q ~ P IJv(q) ~ [h]F}. By Lemma 11, D is dense beneath p in A. Since j r  is 
complete, we see that Jv(P) = sup({jr(q)/q E D }) =< [h ]F. QED Lemma 12 

6.4. Let us still assume that j r :A-- 'AX/F is complete. Let n e : A X / F ~ A  
denote the normal projection associated to the complete embedding j r .  

LEMMA 13. Let h E A X ~  V. Then: I Ih-~(G)E(F)  + II A =rrr([h]r).  

Hence, h -I(G) E (Pc) + iffrrr([h IF) E G. 

PROOF OF LEMMA 13. Define a function g E A  x N V setting, for x E X ,  
g(x) = 1 - f ( x )  (in A). Take p EA.  By Lemma 12, we see that p I [ -h-I (G)E 
(/~)+ iffp I~-g-l(G)q~Piff(Vq <= p)[q 1[r g I (G)EP]  i ff(Vq ___< P)[Jr(q)•[glr] 
i f f (Vq =< P)[jF(q)^ [h]r > 0]. 

Hence, summarizing, p I[- h - I ( G ) E ( P )  + i f f (Vq =< P)[JF(q) ^ [h]F > 0]. 
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In order to conclude the proof of Lemma 13, we hence need only the 

following: 

CLAIM 1. Assume tha t j  : A ----B is a complete morphism between boolean 

algebras, admitting an associated normal projection zt : B ----A. Take p CA and 

bCB.  Then: (Vq < p)[j(q)^b > 0 ]  i f fp  < zt(b). 

PROOF OF CLAIM 1. Assume that (V q <= p)[j(q) ^ b > 0], but p ~ zt(b). For 

some q, 0 < q _-< p and q ^ zt(b) = 0. Hence, j(q) ^ b = 0, for, if not, it would 

project on an element r CA such that r _-< q, zr(b). The converse is clear. 

QED Lemma 13 

6.5. Proof of Theorem 10. Hence we let Fbe ,  in V, a weakly precipitous 

filter on some fixed regular cardinal x. Let A denote the boolean completion of 

P, and let G be A-generic over V. We have got to show that, in V[G], F~ is a 

weakly precipitous filter on x. 
Let 0 be an ordinal such that V[G] ~ "0 is a cardinal and 0 > (22") +". By 3.7, 

it is enough to show that player II has a winning strategy in the game G*(P~, 0). 

We shall now describe such a strategy. 

By 3.7 there exists an ordinal ~ such that, in V, player II has a winning 

strategy in the game G(F, O, 8). Let tr b a fixed winning strategy for player II in 

this game (in V). We shall actually construct a winning strategy (in V[G]), for 
player II in the game G(F~, 0, ~), say 8. Assume that, in V[G], I plays, in 

G(/~a, O, ~), a pair (Xl, fl), where XI C (/7~) + a n d f  : x ~ O. Set Fo = F. 
Let h~CA ~ f3 V be such that Xi = (hO-t(G) and, applying the maximum 

principle in V, let w~ C(VA) ~ be such that 

(a) for all a < x, (wl(a))a = fl(a), 
(b) for all a < x, [[-A "wl(a)COn and wl(a) < 0". 

CLAIM 1. There exists, in V, a function hi*CA '~, a function glCO x, a 
normal filter F~ over x and an ordinal al < ~ such that: 

(1) for all a < x, h*(a) <= h~(a), 
(2) for all a < x, if h~*(a) > 0, then h*(a) [ h  Wl(a) = (g~(a)) v, 
(3) (hi*)-I(G)C((/~I)~) +, 

(4) if we set A~ = {a < x ] h*(a) > 0), then (F~, a0  = a(A i, gO. 

REMARK. Since (h*)-l(G)C_AI, point (3) shows that A I E ( F I ) + ;  hence, 
tr(A~, g~) is defined. 

PROOF OF CLAIM 1. As in the previous sections, we define A~/F and 
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j r :A  --"A'qF. Since F is x-complete and A has the x-antichain condition, Jr is 
complete. Hence, we shall denote by ztr its associated normal projection. 

Set Pl -~ ltr([hl]r). By Lemma 13, Pl ~ G. Hence, in order to prove Claim 1, it 
is enough to show that the following set: 

D = { p EA I there exists h*, gi, FI, al satisfying points (1), (2), 
(4) of  Claim 1 and such that rtr,([h*]r,) > p} 

is dense in A beneath Pl. 
For, if this is the case, since G is generic andpi  E G, we can find h*, gl, F1, am 

satisfying points (1), (2), (4) of Claim 1, such that nrl([h*]F,)E G. By Lemma 
13, this implies that these four objects satisfy point (3) of  Claim 1 as well. 

To show the density of D beneath Pi, take q EA,  such that 0 < q _-< Pl. 

Hence, Jr(q) ^ [hi]r > 0. Set A1 = {a < x [ q ^ hi(a) > 0}. Hence, A IEF +. 
Define gi ~ 0 ~ and h* ~A ~ as follows: 

(a) ifaq~Ai, h*(a) = 0 (in A) and gi(a) = 0 (in On), 
(b) i f a ~ A i ,  then h*(a) and gl(a) are chosen in such a way that 

0 < h~(a)  _-< q A hi(a) and h*(a) Ih (gi(a)) v = wl(a). 

It is clear that conditions (1) and (2) of the claim are satisfied. Since A l E F § 
we can set (F~, al) = a(Al, gO. Hence, condition (4) is satisfied too. Finally, let 
us set p = ltr,([h*]F,). In order to finish the proof  of Claim I we only need to 
show that 0 < p _-< q. Since A I~  FI, [h*]e, > 0, hence p > 0. On the other hand, 
for aEAl, hl*(a)<q, and hence [h*]r,<jr,(q), which implies that p < 
7[F l ( J r , (q ) )  = q. QED Claim 1 

BACK TO THE PROOF OF THE THEOREM. Hence, let us choose a quadruple 
(Fl, gl, h*, a0  satisfying Claim 1. The answer of  player II by 0 to (X,  f3  in 
G(Fa, 0, tf) will be 

o(x,, A) = (P l [ (h* ) - l (G) ] ,  a i)  = (H,,  ai), 

say. This has a sense, since (h*) - I (G)~  (Pi)+. 
We shall now show how to construct the answer by 0 to the second move 

(X2, f2) of  player I in G(F, 0, 5). 
Note that, since the G-game is an open game, we can always assume that a is 

a positional strategy, i.e., that the value of  o depends only on the last move of  
player I. 

Without loss of generality, we can assume that X2 _C (h*)-l(G) and that, 
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for all a E X2, f2(a) < f~(a). Let, as before, w2~ ( W A) x N V and h 2EA r A V be 

such that 
(a) for all a < x, (w2(a))~ = f2(a), 
(b) X2 = (hE)-l(G), 
(c) for all a < x, h2(a) _-< h*(a), 
(d) for all a < x, I[-a " i faE(h2)  -1(G), then w2(a) < wl(a)". 

Using a density argument identical to that of the proof  of Claim 1, we can find 
a quadruple (F2, g2, h~', a2) satisfying Claim 1 with 1 added to every index. 
Hence, #(X2, f2) will be defined as (F2[(h~')- I(G)], a2). It is clear that we can 
continue in this way, and that the strategy #just  described is winning for player 

II in G(ff, O, ~). QED Theorem 10 
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